Parallelism of intestinal secretory IgA shapes functional microbial fitness

1. Bunker, J. J. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, eaan6619 (2017 ).
PubMed.
PubMed Central.
Post.
CAS.

Google Scholar.

2. Moor, K. et al. High-avidity IgA protects the intestine by enchaining growing germs. Nature 544, 498– 502 (2017 ).
CAS.
PubMed.
Article.
ADS.

Google Scholar.

3. Benckert, J. et al. The bulk of digestive tract IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J. Clin. Invest. 121, 1946– 1955 (2011 ).
CAS.
PubMed.
PubMed Central.
Article.

Google Scholar.

Google Scholar.

Di Niro, R. et al. Salmonella infection drives promiscuous B cell activation followed by extrafollicular affinity maturation.
PubMed.
PubMed Central.
Article.
CAS.

5. Sterlin, D. et al. Human IgA binds a diverse selection of commensal bacteria. J. Exp. Med. 217, e20181635 (2020 ).
PubMed.
Post.
CAS.

Okai, S. et al. High-affinity monoclonal IgA manages gut microbiota and prevents colitis in mice. Nat.
CAS.
PubMed.
Post.

Google Scholar.

Google Scholar.

7. Cullender, T. C. et al. Adaptive and natural resistance connect to satiate microbiome flagellar motility in the gut. Cell Host Microbe 14, 571– 581 (2013 ).
CAS.
PubMed.
PubMed Central.
Article.

Google Scholar.

8. Rollenske, T. et al. Cross-specificity of protective human antibodies versus Klebsiella pneumoniae LPS O-antigen. Nat. Immunol. 19, 617– 624 (2018 ).
CAS.
PubMed.
Article.

Google Scholar.

9. Yang, C., Chen-liaw, A., Moran, T. M., Cerutti, A. & & Faith, J.J. Immunoglobulin A antibody composition is sculpted to bind the self gut microbiome. Preprint at bioRxiv https://doi.org/10.1101/2020.11.30.405332 (2020 ).

Google Scholar.

Google Scholar.

Rev. Immunol. 36, 359– 381 (2018 ).
CAS.
PubMed.
Article.

Nowosad, C. R. et al. Tunable dynamics of B cell choice in gut germinal centres.
CAS.
PubMed.
PubMed Central.
Article.
ADS.

12. Peterson, D. A., McNulty, N. P., Guruge, J. L. & & Gordon, J. I. IgA reaction to cooperative bacteria as an arbitrator of gut homeostasis. Cell Host Microbe 2, 328– 339 (2007 ).
CAS.
PubMed.
Post.

Google Scholar.

Peterson, D. A. et al. Identifying the interactions in between a naturally primed immunoglobulin A and its conserved Bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice. J. Biol.
CAS.
PubMed.
PubMed Central.
Short article.

Google Scholar.

Lycke, N., Eriksen, L. & & Holmgren, J. Protection versus cholera contaminant after oral immunization is thymus-dependent and associated with digestive tract production of neutralizing IgA antitoxin. J. Immunol.
CAS.
PubMed.
Post.

Google Scholar.

15. Pabst, O. & & Slack, E. IgA and the intestinal microbiota: the value of being specific. Mucosal Immunol. 13, 12– 21 (2020 ).
CAS.
PubMed.
Post.

Google Scholar.

Joglekar, P. et al. Intestinal IgA regulates expression of a fructan polysaccharide utilization locus in colonizing gut commensal Bacteroides thetaiotaomicron.
CAS.
PubMed.
PubMed Central.
Post.

Nakajima, A. et al. IgA regulates the structure and metabolic function of gut microbiota by promoting symbiosis in between germs. J. Exp.
CAS.
PubMed.
PubMed Central.
Short article.

Google Scholar.

Google Scholar.

18. Hapfelmeier, S. et al. Reversible microbial colonization of germ-free mice exposes the characteristics of IgA immune responses. Science 328, 1705– 1709 (2010 ).
CAS.
PubMed.
PubMed Central.
Short article.
ADS.

Google Scholar.

19. Lindner, C. et al. Diversity of memory B cells drives the constant adaptation of secretory antibodies to gut microbiota. Nat. Immunol. 16, 880– 888 (2015 ).
CAS.
PubMed.
Short article.

Google Scholar.

20. Maurice, C. F., Haiser, H. J. & & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39– 50 (2013 ).
CAS.
PubMed.
PubMed Central.
Article.

Google Scholar.

21. Li, H. et al. Systemic or mucosal microbiota direct exposures form the B cell collection. Nature 584, 274– 278 (2020 ).
CAS.
PubMed.
Short article.
ADS.

Hendrickson, B. A. et al. Transformed hepatic transportation of immunoglobulin A in mice doing not have the J chain. J. Exp.
CAS.
PubMed.
Short article.

Johansen, F. et al. Lack of epithelial immunoglobulin A transportation, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J. Exp.
CAS.
PubMed.
PubMed Central.
Post.

Google Scholar.

Google Scholar.

Google Scholar.

24. Fransen, F. et al. BALB/c and C57BL/6 mice vary in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 43, 527– 540 (2015 ).
CAS.
PubMed.
Article.

Google Scholar.

Google Scholar.

J. Bacteriol. 151, 718– 722 (1982 ).
CAS.
PubMed.
PubMed Central.
Post.

Google Scholar.

Google Scholar.

J. Bacteriol. 180, 3917– 3922 (1998 ).
CAS.
PubMed.
PubMed Central.
Short article.

Wardemann, H. et al. Primary autoantibody production by early human B cell precursors.
CAS.
PubMed.
Short article.
ADS.

28. Mouquet, H. & & Nussenzweig, M. C. Polyreactive antibodies in adaptive immune responses to viruses. Cell. Mol. Life Sci. 69, 1435– 1445 (2011 ).
PubMed.
Short article.
CAS.

Google Scholar.

29. Guthmiller, J. J. et al. Polyreactive broadly reducing the effects of B cells are selected to supply defense against pandemic threat influenza viruses. Immunity 53, 1230– 1244 (2020 ).
CAS.
PubMed.
PubMed Central.
Short article.

Google Scholar.

Stern, R. J. et al. Conversion of dTDP-4-keto-6-deoxyglucose to free dTDP-4-keto-rhamnose by the rmlC gene products of Escherichia coli and Mycobacterium tuberculosis.
CAS.
PubMed.
Post.

Google Scholar.

Wold, A. E. et al. Secretory immunoglobulin A brings oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. 58, 3073– 3077 (1990 ).
CAS.
PubMed.
PubMed Central.
Post.

Google Scholar.

Google Scholar.

Weiss, G. L. et al. Architecture and function of human uromodulin filaments in urinary tract infections.
Post.
ADS.
CAS.

Google Scholar.

Kabbert, J. et al. High microbiota reactivity of adult human digestive IgA needs somatic mutations. J. Exp.
PubMed.
PubMed Central.
Post.
CAS.

34. Baba, T. et al. Building of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006 ).
PubMed.
PubMed Central.
Short article.
CAS.

Meuskens, I., Michalik, M., Chauhan, N., Linke, D. & & Leo, J. C. A brand-new pressure collection for improved expression of outer membrane proteins. Cell.

Structure– kinetic relationship of carbapenem antibacterials permeating through E. coli OmpC porin. Proteins 82, 2998– 3012 (2014 ).
CAS.
PubMed.
Article.

Lukasiewicz, J. et al. Serological characterization of anti-endotoxin serum directed versus the conjugate of oligosaccharide core of Escherichia coli type R4 with tetanus toxoid. FEMS Immunol.
CAS.
PubMed.
Short article.

Google Scholar.

Google Scholar.

Google Scholar.

38. Keegan, N., Ridley, H. & & Lakey, J. H. Discovery of biphasic thermal unfolding of OmpC with implications for surface area loop stability. Biochemistry 49, 9715– 9721 (2010 ).
CAS.
PubMed.
Short article.

Google Scholar.

39. Schwechheimer, C. & & Kuehn, M. J. Outer-membrane blisters from Gram-negative germs: biogenesis and functions. Nat. Rev. Microbiol. 13, 605– 619 (2015 ).
CAS.
PubMed.
PubMed Central.
Post.

Google Scholar.

40. Chen, J. et al. Immunoglobulin gene rearrangement in B cell deficient mice produced by targeted deletion of the JH locus. Int. Immunol. 5, 647– 656 (1993 ).
CAS.
PubMed.
Article.

Google Scholar.

41. Meffre, E. et al. Surrogate light chain revealing human peripheral B cells produce self-reactive antibodies. J. Exp. Medication. 199, 145– 150 (2004 ).
CAS.
PubMed.
PubMed Central.
Article.

Google Scholar.

42. Ofek, I., Mirelman, D. & & Sharon, N. Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature 265, 623– 625 (1977 ).
CAS.
PubMed.
Short article.
ADS.

Google Scholar.

43. Busse, C. E., Czogiel, I., Braun, P., Arndt, P. F. & & Wardemann, H. Single-cell based high-throughput sequencing of full-length immunoglobulin heavy and light chain genes. Eur. J. Immunol. 44, 597– 603 (2014 ).
CAS.
PubMed.
Short article.

Google Scholar.

44. Tiller, T., Busse, C. E. & & Wardemann, H. Cloning and expression of murine Ig genes from single B cells. J. Immunol. Techniques 350, 183– 193 (2009 ).
CAS.
PubMed.
Post.

Urdaneta, V. & & Casadesús, J. Interactions between bacteria and bile salts in the hepatobiliary and gastrointestinal systems. Med.

Li, H. et al. The external mucus layer hosts an unique digestive tract microbial specific niche. 6, 8292 (2015 ).
CAS.
PubMed.
Short article.
ADS.

Google Scholar.

Google Scholar.

47. Imkeller, K., Arndt, P. F., Wardemann, H. & & Busse, C. E. sciReptor: analysis of single-cell level immunoglobulin repertoires. BMC Bioinform. 17, 67 (2016 ).
Post.
CAS.

Google Scholar.

Bunker, J. J. et al. Benckert, J. et al. Guthmiller, J. J. et al. Stern, R. J. et al. Lukasiewicz, J. et al.

Google Scholar.

Keseler, I. M. et al. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12.
CAS.
PubMed.
Short article.