
1. Walsh, C. T. & & Tang, Y. The Chemical Biology of Human Vitamins (RSC, 2019).
Cantó, C., Menzies, K. J. & & Auwerx, J. NAD+ metabolic process and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. 22, 31– 53 (2015 ).
PubMed.
PubMed Central.
Google Scholar.
3. Depaix, A. & & Kowalska, J. NAD analogs in help of chemical biology and medicinal chemistry. Molecules 24, 4187 (2019 ).
CAS.
PubMed Central.
Google Scholar.
4. Schuller, M. et al. Molecular basis for DarT ADP-ribosylation of a DNA base. Nature 596, 597– 602 (2021 ).
ADS.
CAS.
PubMed.
Google Scholar.
5. Newman, D. J. & & Cragg, G. M. Natural items as sources of new drugs over the nearly four years from 01/1981 to 09/2019. J. Nat. Prod. 83, 770– 803 (2020 ).
CAS.
PubMed.
Google Scholar.
6. Walsh, C. T. & & Tang, Y. Natural Product Biosynthesis: Chemical Logic and Enzymatic Machinery (RSC, 2017).
7. Blin, K., Kim, H. U., Medema, M. H. & & Weber, T. Recent development of antiSMASH and other computational methods to mine secondary metabolite biosynthetic gene clusters. Short. Bioinform. 20, 1103– 1113 (2018 ).
Google Scholar.
8.Houge-Frydrych, C. S. V., Gilpin, M. L., Skett, P. W. & & Tyler, J. W. SB-203207 and SB-203208, two unique isoleucyl tRNA synthetase inhibitors from a Streptomyces sp. II. Structure decision. J. Antibiot. 53, 364– 372 (2000 ).
CAS.
Google Scholar.
9. Stefanska, A. L., Cassels, R., Ready, S. J. & & Warr, S. R. SB-203207 and SB-203208, 2 unique isoleucyl tRNA synthetase inhibitors from a Streptomyces sp. I. Fermentation, seclusion and properties. J. Antibiot. 53, 357– 363 (2000 ).
CAS.
Google Scholar.
10. Takahashi, A., Kurasawa, S., Ikeda, D., Okami, Y. & & Takeuchi, T. Altemicidin, a brand-new acaricidal and antitumor substance. I. Taxonomy, fermentation, isolation and biological and physico-chemical residential or commercial properties. J. Antibiot. 42, 1556– 1561 (1989 ).
CAS.
Google Scholar.
11. Takahashi, A., Kurasawa, S., Ikeda, D., Okami, Y. & & Takeuchi, T. Altemicidin, a brand-new acaricidal and antitumor compound. II. Structure determination. J. Antibiot. 42, 1562– 1566 (1989 ).
CAS.
Google Scholar.
12. Yan, Y., Liu, N. & & Tang, Y. Recent developments in self-resistance gene directed natural product discovery. Nat. Prod. Rep. 37, 879– 892 (2020 ).
CAS.
PubMed.
PubMed Central.
Google Scholar.
13. Hu, Z., Awakawa, T., Ma, Z. & & Abe, I. Aminoacyl sulfonamide assembly in SB-203208 biosynthesis. Nat. Commun. 10, 184 (2019 ).
ADS.
PubMed.
PubMed Central.
Google Scholar.
Chem. Rev. 112, 2642– 2713 (2012 ).
CAS.
PubMed.
Google Scholar.
15. Eliot, A. C. & & Kirsch, J. F. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73, 383– 415 (2004 ).
CAS.
PubMed.
Google Scholar.
Google Scholar.
Nat. Rep. 36, 430– 457 (2019 ).
CAS.
PubMed.
17. Cook, P. D. & & Holden, H. M. A structural study of GDP-4-keto-6-deoxy-d-mannose-3-dehydratase: captured in the act of geminal diamine formation. Biochemistry 46, 14215– 14224 (2007 ).
CAS.
PubMed.
Google Scholar.
18. Hirayama, A., Miyanaga, A., Kudo, F. & & Eguchi, T. Mechanism-based trapping of the quinonoid intermediate by utilizing the K276R mutant of PLP-dependent 3-aminobenzoate synthase PctV in the biosynthesis of pactamycin. ChemBioChem 16, 2484– 2490 (2015 ).
CAS.
PubMed.
Harmange Magnani, C. S. & & Maimone, T. J. Dearomative synthetic entry into the altemicidin alkaloids. J. Am. Chem.
CAS.
PubMed.
Google Scholar.
Google Scholar.
20. Chen, M., Liu, C. T. & & Tang, Y. Discovery and biocatalytic application of a PLP-dependent amino acid g-substitution enzyme that catalyzes C-C bond formation. J. Am. Chem. Soc. 142, 10506– 10515 (2020 ).
CAS.
PubMed.
PubMed Central.
Google Scholar.
21. Hai, Y., Chen, M., Huang, A. & & Tang, Y. Biosynthesis of mycotoxin fusaric acid and application of a PLP-dependent enzyme for chemoenzymatic synthesis of replaced l-pipecolic acids. J. Am. Chem. Soc. 142, 19668– 19677 (2020 ).
CAS.
PubMed.
PubMed Central.
Google Scholar.
22. Spiering, M. J., Moon, C. D., Wilkinson, H. H. & & Schardl, C. L. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 169, 1403– 1414 (2005 ).
CAS.
PubMed.
PubMed Central.
Google Scholar.
23. Cui, Z. et al. Pyridoxal-5 ′- phosphate-dependent alkyl transfer in nucleoside antibiotic biosynthesis. Nat. Chem. Biol. 16, 904– 911 (2020 ).
CAS.
PubMed.
PubMed Central.
Brzovic, P. et al. Response system of Escherichia coli cystathionine γ-synthase: direct proof for a pyridoxamine derivative of vinylglyoxylate as a crucial intermediate in pyridoxal phosphate dependent γ-elimination and γ-replacement responses.
CAS.
PubMed.
Google Scholar.
Google Scholar.
25. Bailey, H. J. et al. Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop controling substrate binding and product release. Nat. Commun. 11, 1– 12 (2020 ).
Poulos, T. L. Heme enzyme structure and function. Chem.
CAS.
PubMed.
PubMed Central.
Google Scholar.
Google Scholar.
Raboni, S. et al. in Comprehensive Natural Products II: Chemistry and Biology Vol. 273– 315 (Elsevier, 2010).
Nat. Prod.
CAS.
PubMed.
PubMed Central.
Walsh, C. T. Insights into the chemical logic and enzymatic equipment of NRPS assembly lines. Nat.
CAS.
PubMed.
Google Scholar.
Google Scholar.
Google Scholar.
Mehta, A. P. et al. Radical S-adenosylmethionine (SAM) enzymes in cofactor biosynthesis: a treasure trove of complicated natural extreme rearrangement reactions. J. Biol.
CAS.
PubMed.
31. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 1– 8 (2008 ).
Google Scholar.
Google Scholar.
Nat. 5, 725– 738 (2010 ).
CAS.
PubMed.
PubMed Central.
33. Roy, A., Yang, J. & & Zhang, Y. COFACTOR: a precise relative algorithm for structure-based protein function annotation. Nucleic Acids Res. 40, 471– 477 (2012 ).
Google Scholar.
34. Bashiri, G., Rehan, A. M., Greenwood, D. R., Dickson, J. M. J. & & Baker, E. N. Metabolic engineering of cofactor F420 production in Mycobacterium smegmatis. PLoS ONE 5, 1– 10 (2010 ).
Google Scholar.
35. Bashiri, G., Squire, C. J., Baker, E. N. & & Moreland, N. J. Expression, filtration and condensation of selenomethionine and native identified Mycobacterium tuberculosis FGD1 (Rv0407) utilizing a Mycobacterium smegmatis expression system. Protein Expr. Purif. 54, 38– 44 (2007 ).
CAS.
PubMed.
Google Scholar.
36. Oyugi, M. A., Bashiri, G., Baker, E. N. & & Johnson-winters, K. Investigating the response system of F 420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium tuberculosis: kinetic analysis of the mutant and wild-type enzymes. Biochemistry 55, 5566– 5577 (2016 ).
CAS.
PubMed.
Google Scholar.
37. McCarty, R. M., Krebs, C. & & Bandarian, V. Spectroscopic, steady-state kinetic, and mechanistic characterization of the extreme SAM enzyme QueE, which catalyzes a complicated cyclization reaction in the biosynthesis of 7-deazapurines. Biochemistry 52, 188– 198 (2013 ).
CAS.
PubMed.
Google Scholar.
J. Nat. J. Antibiot. J. Antibiot. J. Antibiot. Bailey, H. J. et al.